Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cellulose (Lond) ; 30(13): 8311-8323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663065

RESUMO

Cellulose nanocrystals are slender, negatively charged nanoparticles that spontaneously form a cholesteric liquid crystal in aqueous suspension above a critical concentration. When they are suspended in apolar solvents such as toluene using surfactants, the application of an AC electric field leads to the reorientation and then distortion of the cholesteric order until the cholesteric structure completely unwinds into a nematic-like order, typically above 0.4-0.6 kV/cm at 1kHz. In this work, we show that at much higher electric fields (≥ 4.6 kV/cm at 1 kHz) the sample develops a periodic pattern that varies with the field amplitude. We ascribed this pattern to electrohydrodynamic convection instabilities. These instabilities usually present complex regimes varying with the field, the voltage, the frequency and the geometry. However, the typical geometry where these instabilities were most documented across the literature differs from the geometry used in this work. This work concludes with possible future experimental investigations to clarify the exact regime of instability responsible for these observations. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-023-05391-6.

2.
ACS Synth Biol ; 11(10): 3516-3528, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36194500

RESUMO

The cell wall constitutes a fundamental structural component of plant cells, providing them with mechanical resistance and flexibility. Mimicking this wall is a critical step in the conception of an experimental model of the plant cell. The assembly of cellulose/hemicellulose in the form of cellulose nanocrystals and xyloglucans as a representative model of the plant cell wall has already been mastered; however, these models lacked the pectin component. In this work, we used an engineered chimeric protein designed for bridging pectin to the cellulose/hemicellulose network, therefore achieving the assembly of complete cell wall mimics. We first engineered a carbohydrate-binding module from Ruminococcus flavefaciens able to bind oligogalacturonan, resulting in high-affinity polygalacturonan receptors with Kd in the micromolar range. A Janus protein, with cell wall gluing property, was then designed by assembling this carbohydrate-binding module with a Ralstonia solanacearum lectin specific for fucosylated xyloglucans. The resulting supramolecular architecture is able to bind fucose-containing xyloglucans and homogalacturonan, ensuring high affinity for both. A two-dimensional assembly of an artificial plant cell wall was then built first on synthetic polymer and then on the supported lipid bilayer. Such an artificial cell wall can serve as a basis for the development of plant cell mechanical models and thus deepen the understanding of the principles underlying various aspects of plant cells and tissues.


Assuntos
Bicamadas Lipídicas , Células Vegetais , Células Vegetais/metabolismo , Bicamadas Lipídicas/metabolismo , Fucose/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Pectinas/análise , Pectinas/química , Pectinas/metabolismo , Celulose/metabolismo , Lectinas/análise , Lectinas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
3.
J Biol Chem ; 296: 100602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785359

RESUMO

The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph-mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.


Assuntos
Membrana Celular/metabolismo , Plantas/metabolismo , Esfingolipídeos/metabolismo , Biofísica , Polissacarídeos/metabolismo , Especificidade da Espécie , Esfingolipídeos/química
4.
Langmuir ; 36(6): 1474-1483, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31904979

RESUMO

The deposition of cellulose nanocrystals (CNCs) on a supported lipid bilayer (SLB) was investigated at different length scales. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to probe the bilayer formation and to show for the first time the CNC deposition onto the SLB. Specifically, classical QCM-D measurements gave estimation of the adsorbed hydrated mass and the corresponding film thickness, whereas complementary experiments using D2O as the solvent allowed the quantitative determination of the hydration of the CNC layer, showing a high hydration value. Scanning force microscopy (SFM) and total internal reflection fluorescence microscopy (TIRF) were used to probe the homogeneity of the deposited layers, revealing the structural details at the particle and film length scales, respectively, thus giving information on the effect of CNC concentration on the surface coverage. The results showed that the adsorption of CNCs on the supported lipid membrane depended on lipid composition, CNC concentration, and pH conditions, and that the binding process was governed by electrostatic interactions. Under suitable conditions, a uniform film was formed, with thickness corresponding to a CNC monolayer, which provides the basis for a relevant 2D model of a primary plant cell wall.


Assuntos
Celulose , Nanopartículas , Adsorção , Bicamadas Lipídicas , Técnicas de Microbalança de Cristal de Quartzo
5.
Front Chem ; 7: 507, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380351

RESUMO

We have investigated the ability of multilayered hybrid thin films of cellulose nanocrystals (CNCs) and gibbsite nanoplatelets (GNPs) to be built by the layer-by-layer (LbL) technique onto substrates selected for packaging applications, and to improve the oxygen barrier properties. Using complementary structural characterization techniques, namely atomic force microscopy, ellipsometry, and spectral reflectance, we show that when deposited onto model silicon substrates these hybrid films were homogenous and of reduced porosity, and were comprised of alternately deposited monolayers of GNPs and CNCs. The successful deposition of such homogeneous and dense hybrid thin films onto various types of flexible substrates showing different chemical compositions, hydrophilicity, and surface morphology, ranging from cardboard to smart paper, polyethylene (PE) films, and PE-coated cardboard was also confirmed by scanning electron microscopy observations. In view of the diversity of these substrates we could confirm the remarkable robustness of such a deposition process, likely due to (i) the adaptability of the LbL assembling technique and (ii) the strong electrostatic and hydrogen bonding interactions between GNPs and CNCs. The measurement of the oxygen transmission rate (OTR) at 23°C and 50% RH showed that the oxygen barrier properties of the bare substrates could be significantly improved (e.g., 75% decrease of the OTR) after the deposition of such thin (<100 nm) multilayered hybrid films. This lowered permeability was tentatively attributed to the highly tortuous morphology of the coating, acting to impede the gas diffusion. These partially biosourced very thin films stand as good candidates for using as coatings showing high oxygen barrier performance.

6.
Biotechnol Biofuels ; 12: 76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30976326

RESUMO

BACKGROUND: Lignocellulose biomass is known as a recalcitrant material towards enzymatic hydrolysis, increasing the process cost in biorefinery. In nature, filamentous fungi naturally degrade lignocellulose, using an arsenal of hydrolytic and oxidative enzymes. Assessment of enzyme hydrolysis efficiency generally relies on the yield of glucose for a given biomass. To better understand the markers governing recalcitrance to enzymatic degradation, there is a need to enlarge the set of parameters followed during deconstruction. RESULTS: Industrially-pretreated biomass feedstocks from wheat straw, miscanthus and poplar were sequentially hydrolysed following two steps. First, standard secretome from Trichoderma reesei was used to maximize cellulose hydrolysis, producing three recalcitrant lignin-enriched solid substrates. Then fungal secretomes from three basidiomycete saprotrophs (Laetisaria arvalis, Artolenzites elegans and Trametes ljubarskyi) displaying various hydrolytic and oxidative enzymatic profiles were applied to these recalcitrant substrates, and compared to the T. reesei secretome. As a result, most of the glucose was released after the first hydrolysis step. After the second hydrolysis step, half of the remaining glucose amount was released. Overall, glucose yield after the two sequential hydrolyses was more dependent on the biomass source than on the fungal secretomes enzymatic profile. Solid residues obtained after the two hydrolysis steps were characterized using complementary methodologies. Correlation analysis of several physico-chemical parameters showed that released glucose yield was negatively correlated with lignin content and cellulose crystallinity while positively correlated with xylose content and water sorption. Water sorption appears as a pivotal marker of the recalcitrance as it reflects chemical and structural properties of lignocellulosic biomass. CONCLUSIONS: Fungal secretomes applied to highly recalcitrant biomass samples can further extend the release of the remaining glucose. The glucose yield can be correlated to chemical and physical markers, which appear to be independent from the biomass type and secretome. Overall, correlations between these markers reveal how nano-scale properties (polymer content and organization) influence macro-scale properties (particle size and water sorption). Further systematic assessment of these markers during enzymatic degradation will foster the development of novel cocktails to unlock the degradation of lignocellulose biomass.

7.
Carbohydr Polym ; 210: 100-109, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30732742

RESUMO

This study proposes a grafting strategy of thermo-sensitive amine-terminated oligomers of Poly(N-Isopropylacrylamide) (Pnipam2500) onto the surface of Cellulose Nanocrystals (CNCs). Pnipam2500 grafting in aqueous condition via peptidic coupling was explored to obtain CNC hydrogel with thermo-reversible aggregation and new colloidal properties. A discussion between grafting vs adsorption /presence of the Pnipam2500 is proposed. A large range of experimental techniques was used to investigate the properties of the CNC decorated with polymer and to confirm the grafting. Elemental analysis, infrared spectroscopy, solid state NMR and conductometric titration of washed CNC-g-Pnipam2500 demonstrate that at least a part of Pnipam2500 was covalently bonded with CNC. A thermo-reversible aggregation was observed by Dynamic Light Scattering experiments and thermo-sensitive behavior is observed by rheological experiments. For grafted polymer the viscosity increases from 0.008 to 40 Pa∙s at low shear rate when the LCST is reached, whereas, in the case of polymer adsorption, the viscosity increases only from 0.002 to 0.3 Pa∙s. This thermo-reversible, bio-based and biocompatible system paves the way for the design of injectable hydrogel and biomedical nanocomposite materials.

8.
Langmuir ; 34(37): 11066-11075, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30129768

RESUMO

The periodate oxidation of microfibrillated cellulose followed by a reduction treatment was implemented to produce a new type of sterically stabilized cellulosic nanocrystals, which were characterized at the molecular and colloidal length scales. Solid-state NMR data showed that these treatments led to objects consisting of native cellulose and flexible polyols resulting from the oxidation and subsequent reduction of cellulose. A consistent set of data from dynamic light scattering, turbidimetry, transmission electron microscopy, and small-angle X-ray scattering experiments further showed that stable neutral elongated nanoparticles composed of a crystalline cellulosic core surrounded by a shell of dangling polyol chains were produced. The dimensions of these biosourced nanocrystals could be controlled by the degree of oxidation of the parent dialdehyde cellulose sample. The purely steric origin of the colloidal stability of these nanoparticles is a strong asset for their use under conditions where electrostatics no longer provides colloidal stability.

9.
Chem Soc Rev ; 47(8): 2609-2679, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29658545

RESUMO

A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

10.
Soft Matter ; 14(14): 2638-2648, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29547224

RESUMO

Rubber materials with well-dispersed fillers and large mechanical reinforcement have been obtained by melt-processing a diene elastomer matrix and tailored nanocellulose powders having both a high specific surface area and a modified interface. Such filler powders with a specific surface area of 180 m2 g-1 and 100 m2 g-1 have been obtained by freeze-drying suspensions of short needle-like cellulose nanocrystals (CNCs) and entangled networks of microfibrillated cellulose (MFC) in tert-butanol/water, respectively. A quantitative and toposelective filler surface esterification was performed using a gas-phase protocol either with palmitoyl chloride (PCl) to obtain a hydrophobic but non-reactive nanocellulose interface, or with 3,3'-dithiopropionic acid chloride (DTACl) to introduce reactive groups that can covalently bind the nanocellulose interface to the dienic matrix in a subsequent vulcanization process. A set of filled materials was prepared varying the filler morphology, interface and volume fraction. Transmission electron microscopy images of ultrathin cryo-sections showed that modified nanocellulose fillers presented a relatively homogeneous distribution up to a volume fraction of 20%. The materials also exhibited a significant modulus increase, while keeping an extensibility in the same range as that of the neat matrix. Strikingly, in the case of the reactive interface, a strong stress-stiffening behavior was evidenced from the upward curvature of the tensile curve, leading to a large increase of the ultimate stress (up to 7 times that of the neat matrix). Taken together, these properties, which have never been previously reported for nanocellulose-filled elastomers, match well the mechanical characteristics of industrial carbon black or silica-loaded elastomers.

11.
Polymers (Basel) ; 10(11)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30961127

RESUMO

The development of non-cellularized injectable suspensions of viscous chitosan (CHI) solutions (1.7⁻3.3% (w/w)), filled with cellulose nanofibers (CNF) (0.02⁻0.6% (w/w)) of the type nanofibrillated cellulose, was proposed for viscosupplementation of the intervertebral disc nucleus pulposus tissue. The achievement of CNF/CHI formulations which can gel in situ at the disc injection site constitutes a minimally-invasive approach to restore damaged/degenerated discs. We studied physico-chemical aspects of the sol and gel states of the CNF/CHI formulations, including the rheological behavior in relation to injectability (sol state) and fiber mechanical reinforcement (gel state). CNF-CHI interactions could be evidenced by a double flow behavior due to the relaxation of the CHI polymer chains and those interacting with the CNFs. At high shear rates resembling the injection conditions with needles commonly used in surgical treatments, both the reference CHI viscous solutions and those filled with CNFs exhibited similar rheological behavior. The neutralization of the flowing and weakly acidic CNF/CHI suspensions yielded composite hydrogels in which the nanofibers reinforced the CHI matrix. We performed evaluations in relation to the biomedical application, such as the effect of the intradiscal injection of the CNF/CHI formulation in pig and rabbit spine models on disc biomechanics. We showed that the injectable formulations became hydrogels in situ after intradiscal gelation, due to CHI neutralization occurring in contact with the body fluids. No leakage of the injectate through the injection canal was observed and the gelled formulation restored the disc height and loss of mechanical properties, which is commonly related to disc degeneration.

12.
Inorg Chem ; 56(24): 14801-14808, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29193978

RESUMO

In the quest for new, efficient, and noble-metal-free H2-evolution catalysts, hydrogenase enzymes are a source of inspiration. Here, we describe the development of a new hybrid material based on a structural and functional [NiFe]-hydrogenase model complex (NiFe) incorporated into the Zr-based MOF PCN-777. The bulk NiFe@PCN-777 material was synthesized by simple encapsulation. Characterization by solid-state NMR and IR spectroscopy, SEM-EDX, ICP-OES, and gas adsorption confirmed the inclusion of the guest. FTO-supported thin films of the NiFe@PCN-777 composite were obtained by electrophoretic deposition of the bulk material and characterized by SEM-EDX, ICP-OES, and cyclic voltammetry. The average surface concentration of electroactive NiFe catalyst in the film was found to be ∼9.6 × 10-10 mol cm-2, implying that a surprisingly high fraction (37%) of NiFe units incorporated in the MOF are electroactive. By cyclic voltammetry, we showed that NiFe maintains its electrocatalytic capabilities for H+ reduction inside the MOF cavities, even if under controlled-potential electrolysis conditions the activity of NiFe cannot be discerned from that of free PCN-777 and FTO.


Assuntos
Materiais Biomiméticos/química , Hidrogenase/química , Ferro/química , Estruturas Metalorgânicas/química , Níquel/química , Zircônio/química , Catálise , Técnicas Eletroquímicas , Modelos Moleculares , Oxirredução , Prótons
13.
Biomacromolecules ; 18(9): 2918-2927, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28799758

RESUMO

The interaction of 1,2 dioleolyl-sn-glycero-3-phosphatidylcholine (DOPC) vesicles with cellulose nanocrystals (CNCs) using several complementary techniques. Dynamic light scattering, zeta-potential, cryo-transmission electron microscopy and isothermal titration calorimetry (ITC) analyses confirmed the formation of pH-dependent CNC-liposome complexes. ITC was used to characterize the thermodynamic properties of this interaction. Positive values of enthalpy were found at pH lower than 5 where the charge sign of the constituents was opposite. The association was more pronounced at lower pH, as indicated by the higher values of association constant. We suggest that the positive enthalpy is derived from the release of counterions from the particle hydration shell during the association and that the charge of the vesicles plays a significant role in this interaction.


Assuntos
Celulose/química , Lipossomos/química , Nanopartículas/química , Fosfatidilcolinas/química , Concentração de Íons de Hidrogênio
14.
Langmuir ; 33(32): 7896-7907, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28715198

RESUMO

Cellulose nanocrystals (CNCs) are promising biosourced building blocks for the production of high performance materials. In the last ten years, CNCs have been used in conjunction with polymers for the design of multilayered thin films via the layer-by-layer assembly technique. Herein, polymer chains have been replaced with positively charged inorganic gibbsite nanoplatelets (GN) to form hybrid "nanoparticle-only" composite films. A combination of atomic force microscopy and neutron reflectivity experiments was exploited to investigate the growth and structure of the films. Data show that the growth and density of GN/CNC films can be tuned over a wide range during preparation by varying the ionic strength in the CNC suspension and the film drying protocol. Specifically, thin and dense multilayered films or very thick, more porous mixed slabs, as well as intermediate internal structures, could be obtained in a predictable manner. The influence of key physicochemical parameters on the multilayer film buildup was elucidated and the film architecture was linked to the dominating interaction forces between the components. The degree of structural control over these hybrid nanoparticle-only films is much higher than that reported for CNC/polymer films, which offers new properties and potential applications as separation membranes or flame retardant coatings.

15.
Adv Mater ; 29(11)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112444

RESUMO

Cellulose nanocrystal suspensions in apolar solvent spontaneously form iridescent liquid-crystalline phases but the control of their macroscopic order is usually poor. The use of electric fields can provide control on the cholesteric orientation and its periodicity, allowing macroscopic sample homogeneity and dynamical tuning of their iridescent hues, and is demonstrated here.

16.
Chemistry ; 22(48): 17262-17268, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27734588

RESUMO

Metal oxides and metal oxide/carbon composites are entering the development of new technologies and should therefore to be prepared by sustainable chemistry processes. Therefore, a new aspect of the reactivity of cellulose is presented through its solid/gas reaction with vapour of titanium(IV) chloride in anhydrous conditions at low temperature (80 °C). This reaction leads to two transformations both for cellulose and titanium(IV) chloride. A reductive dehydration of cellulose is seen at the lowest temperature ever reported and results in the formation of a carbonaceous fibrous solid as the only carbon-containing product. Simultaneously, the in situ generation of water leads to the formation of titanium dioxide with an unexpected nanoplate morphology (ca. 50 nm thickness) and a high photocatalytic activity. We present the evidence showing the evolution of the cellulose and the TiO2 nanostructure formation, along with its photocatalytic activity. This low-temperature process avoids any other reagents and is among the greenest processes for the preparation of anatase and also for TiO2 /carbon composites. The anisotropic morphology of TiO2 questions the role of the cellulose on the growing process of these nanoparticles.

17.
Langmuir ; 32(17): 4305-12, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27054465

RESUMO

The self-organization properties of sulfated cellulose nanocrystals, TEMPO-oxidized cellulose nanocrystals and polymer-decorated cellulose nanocrystals suspensions in water were investigated and compared. Polarized light optical microscopy observations showed that these three systems phase separated to form a lower anisotropic chiral-nematic phase and an upper isotropic phase following a nucleation and growth mechanism, proving that surface-grafted polymer chains did not inhibit the self-organization properties of CNCs. The phase diagrams and pitch of the suspensions were shown to strongly depend on the surface chemistry of the nanoparticles and the nature of the interacting forces. Especially, the entropic repulsion contribution of the polymer chains to the overall interactions forces resulted in a decrease of the critical volume fractions due to an increase of the effective diameter of the rods. Additionally, above a cellulose volume fraction of 3.5% v/v, the pitch was significantly smaller for polymer-decorated CNC suspensions than for sulfated as-prepared CNC ones, revealing stronger chiral interactions with the surface-grafted chains. In all cases, the addition of small quantities of monovalent salt induced an increase of the critical concentrations, but values for polymer-decorated CNCs were always the smallest ones due to entropic repulsion forces. Overall, results show that polymer grafting provides more tunability to the chiral-nematic phase properties of CNCs, including an enhanced expression of the chirality.

18.
ACS Macro Lett ; 5(6): 730-734, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35614654

RESUMO

The ultrastructural transformation of wood cellulose crystals by hydrothermal treatment was followed by synchrotron and standard X-ray scattering experiments. When treated at 200 °C for 2 h in the presence of an excess of water, a significant sharpening of the equatorial reflections of crystalline cellulose was observed, and the average crystallite size, estimated from the X-ray line broadening, was twice as large as that of untreated wood cellulose. During the treatment, the cellulose structure was converted from the native monoclinic form of cellulose I into a pseudo-orthorhombic system, coined as cellulose I', a transformation occurring only with an excess of water, above 180 °C and after more than half an hour. In situ experiments indicated that the increase of crystallite size was likely due to cocrystallization of individual crystallites rather than to the crystallization of the amorphous domains of cellulose.

19.
PLoS One ; 10(9): e0137481, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26390127

RESUMO

Oomycetes are microorganisms that are distantly related to true fungi and many members of this phylum are major plant pathogens. Oomycetes express proteins that are able to interact with plant cell wall polysaccharides, such as cellulose. This interaction is thought to be mediated by carbohydrate-binding modules that are classified into CBM family 1 in the CAZy database. In this study, the two CBMs (1-1 and 1-2) that form part of the cell wall glycoprotein, CBEL, from Phytophthora parasitica have been submitted to detailed characterization, first to better quantify their interaction with cellulose and second to determine whether these CBMs can be useful for biotechnological applications, such as biomass hydrolysis. A variety of biophysical techniques were used to study the interaction of the CBMs with various substrates and the data obtained indicate that CBEL's CBM1-1 exhibits much greater cellulose binding ability than CBM1-2. Engineering of the family 11 xylanase from Talaromyces versatilis (TvXynB), an enzyme that naturally bears a fungal family 1 CBM, has produced two variants. The first one lacks its native CBM, whereas the second contains the CBEL CBM1-1. The study of these enzymes has revealed that wild type TvXynB binds to cellulose, via its CBM1, and that the substitution of its CBM by oomycetal CBM1-1 does not affect its activity on wheat straw. However, intriguingly the addition of CBEL during the hydrolysis of wheat straw actually potentiates the action of TvXynB variant lacking a CBM1. This suggests that the potentiating effect of CBM1-1 might not require the formation of a covalent linkage to TvXynB.


Assuntos
Celulose/metabolismo , Glicoproteínas/metabolismo , Lectinas/metabolismo , Phytophthora/metabolismo , Sítios de Ligação , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Glicoproteínas/química , Hidrólise , Lectinas/química , Phytophthora/química , Ligação Proteica , Estrutura Terciária de Proteína , Talaromyces/enzimologia , Triticum/metabolismo
20.
ACS Appl Mater Interfaces ; 7(27): 14584-92, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25881329

RESUMO

Nanostructured TiO2 and TiO2@C nanocomposites were prepared by an original process combining biotemplating and mineralization of aerogels of nanofibrillated cellulose (NFC). A direct one step treatment of NFC with TiCl4 in strictly anhydrous conditions allows TiO2 formation at the outermost part of the nanofibrils while preserving their shape and size. Such TiO2@cellulose composites can be transformed into TiO2 nanotubes (TiO2-NT) by calcination in air at 600 and 900 °C, or into TiO2@C nanocomposites by pyrolysis in argon at 600 and 900 °C. Detailed characterization of these materials is reported here, along with an assessment of their performance as negative electrode materials for Li-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA